



PETITS EXERCICES DE CALCUL VECTORIEL

distance d'un point à une droite. Mais l'objectif est ici de se ramener à des calculs de produits scalaires ou vectoriels Il peut y avoir plusieurs façons de répondre aux questions posées ; par exemple, il existe une "formule" donnant la

Trièdre direct

 \vec{v} tel que $(\vec{u}, -\vec{k}, \vec{v})$ oriente un trièdre direct et en déduire la base orthonormée associée. On donne le vecteur $\vec{u} = -\vec{i} - \vec{j}$, où $(\vec{i}, \vec{j}, \vec{k})$ est une base orthonormée directe. Déterminer

Angles entres vecteurs

NB : les caractères romains gras désignent des vecteurs : u, v...

dans cette base les vecteurs $\mathbf{u},\mathbf{v},\mathbf{v}'$ de coordonnées respectives : (1,2,3), (1,b,3), (1,2,c). On se place dans un repère cartésien muni d'une base orthonormée directe. On considère

- 1. Déterminer les valeurs de b et de c telles que \mathbf{v} et \mathbf{v}' soient perpendiculaires à \mathbf{u} .
- 2. Calculer les coordonnées du vecteur w unitaire tel que (u,v,w) soit une base directe.
- 3. Soit α l'angle (en valeur absolue) entre les vecteurs ∇ et ∇ ; calculer $\cos(\alpha)$ et $\sin(\alpha)$

Droites en dimension 2

un repère cartésien O*xyz.* On donne le vecteur $\vec{u}=3\vec{i}+4\vec{j}$, où $(\vec{i},\vec{j},\vec{k})$ est une base orthonormée directe associée à

- 1. Déterminer l'équation de la droite D_1 passant par le point A(1,0,0) et orientée par \vec{u} .
- 2. Déterminer l'équation de la droite passant par A(1,0,0) et perpendiculaire à D_1
- 3. Déterminer l'équation de la droite D₂ passant par les points A(1,0,0) et B(2,2,0), puis l'équation de la droite qui lui est parallèle, passant par l'origine.
- Calculer l'angle entre les droites D₁ et D₂
- 5. Calculer la distance du point B à la droite D₁

Droite et Plan en dimension 3

un repère cartésien Oxyz. On donne le vecteur $\vec{u} = \vec{i} + \vec{j} + \vec{k}$, où $(\vec{i}, \vec{j}, \vec{k})$ est une base orthonormée directe associée à

- 1. Soit un point M(x,y,z) appartenant à la droite passant par O et orientée par \vec{u} : caractériser cette droite (relations entre x, y et z).
- Soit un point M(x,y,z) appartenant au plan Π passant par le point A(1,1,0) et perpendiculaire à \vec{u} : caractériser ce plan (relations entre x, y et z)
- 3. Déterminer une base orthonormée du plan précédent.